Sunday, March 01, 2015

IEEE RAS Summer School on Agricultural Robotics (SSAR 2015)

Early last December, Frank Tobe published the article Agricultural technology making news on Robohub, in which he mentioned the IEEE RAS sponsored Summer School on Agricultural Robotics, to be held in February, 2015. Well, February has come and gone, and the inaugural IEEE RAS Summer School on Agricultural Robotics (SSAR 2015) took place as scheduled.

Organizers for this event included Dr. Robert Fitch (convener), Senior Research Fellow at the Australian Centre for Field Robotics (ACFR), Professor Salah Sukkarieh, ACFR Director of Research and Innovation, Marcel Bergerman of Carnegie Mellon's Field Robotics Center (FRC), Professor EJ (Eldert) van Henten of Wangenigen UR, Professor John Billingsley of the University of South Queensland, John Reid, Director, Product Technology and Innovation at John Deere's Moline Technology Innovation Center (MTIC), and Professor Mingcong Deng of the Graduate School of Engineering, Tokyo University of Agriculture and Technology.

Invited speakers included Andrew Bate, Founding Director and CEO of SWARM FARM Robotic Agriculture, Marcel Bergerman (mentioned above), Professor Simon Blackmore, Head of Engineering at Harper-Adams University, Bruce Finney, Executive Director of Australia's Cotton Research and Development Corporation (CRDC), David Johnson of ACFR, Anthony Kachenko, Research & Development Team Leader & Portfolio Manager at Horticulture Innovation Australia, Associate Professor Kendra Kerrisk of the University of Sydney, Juan Nieto, ACFR Research Fellow, Timo Oksanen, University lecturer in the Helsinki University Department of Agricultural Sciences, Professor Tristan Perez of Queensland University of Technology, Rohan Rainbow of Crop Protection Australia, Andrew Robson, a Research Fellow with the Precision Agriculture Research Group (PARG) at the University of New England, Daniel Schmoldt, National Program Leader in the Division of Agricultural Systems, National Institute of Food and Agriculture, Professor Salah Sukkarieh (mentioned above), Professor EJ (Eldert) van Henten (mentioned above), Brett Whelan, University of Sydney Faculty of Agriculture and Environment, and Qin Zhang, Director of the Center for Precision & Automated Agriculture at Washington State University.

Of these, Robert Fitch,Salah Sukkarieh, and Kendra Kirrisk have all been interviewed by Robots Podcast, and Andrew Bate was mentioned prominently in an interview with Peter Corke of Queensland University of Technology. Kendra Kirrisk was also included in 25 women in robotics you need to know about (2014) and in Robotic cornucopia: Robohub focuses on the state-of-the-art and the future of agricultural robotics, and Simon Blackmore, Salah Sukkarieh, and EJ (Eldert) van Henten were all mentioned in a review of an article by James Mitchell Crow. Simon Blackmore has also been interviewed numerous times by BBC Radio4's Farming Today.

The Australian Broadcasting Corporation published several articles about the event on their website: one highlighting Robert Fitch and Andrew Bate, another highlighting EJ van Henten, and a third highlighting Simon Blackmore.

This is an auspicious beginning for what should become an important annual event.

Tuesday, February 03, 2015

Crop-neutrality

The US government currently favors production of certain crops, including corn (maize) and soy beans. A proposal, authored by Tamar Haspel and published yesterday in The Washington Post (Unearthed: A rallying cry for a crop program that could change everything), would change that by shifting subsidies from support for particular crops to crop-neutral support.

While this isn't specifically about robotics, it would have the effect of making more money available for equipment to produce crops other than the handful that have traditionally been subsidized, and, increasingly over time, that will mean robotic equipment, as the value added by sensors, processing, and flexible behavior will become too compelling to forego.

Sunday, February 01, 2015

The costs and benefits of a 'moonshot' project

I've recently come to the conclusion that what I've been proposing in this blog is essentially equivalent to President Kennedy's proposal that the United States should mount a space exploration effort sufficient to send an astronaut on a round trip to the Moon within the decade, at a time when many people still believed such an enterprise to be impossible, despite that, for experts, it had clearly become a matter of doing the engineering, and only the timeline was in doubt, not the objective.

Similarly, while we don't yet have the technology to accomplish the economic robotic performance of horticultural best practices on the scale of agriculture, it's quite clear that no fundamental obstacle stands in the way of developing such technology. We have only to apply ourselves, as roboticists and as citizens supporting their efforts (private, corporate, academic, and governmental citizens), to the project.

I've already addressed many benefits we might expect such a project to produce, directly, as a result of success in the goal of creating the technology necessary to accomplish scaling up those best practices. What I haven't yet more than mentioned in passing, are the spinoffs that can be expected, even if we can't predict what most of them might be in advance.

It's widely understood that the Apollo program produced spinoffs that, taken together, amounted to a huge contribution to the economy, perhaps even more than offsetting the cost of the program itself, not least being the concentration of engineering expertise in US universities and US-based corporations.

Similarly, a determined effort to develop the necessary technologies to support, for example, polyculture incorporating perennials, can be expected to produce numerous spinoffs along the way, not the least of which would be a generation of engineers versed in the many technologies which are collectively referred to as robotics, with the confidence to apply those technologies to the tough problem of cleaning up the environmental damage humanity has done over the past few centuries.

While measured in millions of dollars, perhaps even hundreds of millions to a few billion per year, the cost of underwriting the R&D to accomplish all this would be minor compared with the cost of the Apollo program (in inflation-adjusted dollars), in part because of the far more modest scale of the resources required. Compared to the cost of recent military campaigns it would be paltry. Most importantly, in comparison with the costs of failing to do so, of leaving the future to fend for itself, it would be inconsequential. We cannot afford not to do it!

Sunday, January 25, 2015

Agricultural robotics related projects funded under Horizon 2020

While many projects funded under its rules are still running, the EU's Seventh Framework Programme for Research (FP7), as a basis for new funding, has run its course, and has been replaced by Horizon 2020, The EU Framework Programme for Research and Innovation, which began in 2014 and runs through 2020.

Included under H2020's Digital Agenda, Robotics is only a small part of the overall funding framework. Nevertheless it includes “over 100 collaborative projects.”

The first H2020 call for proposals was issued last year, and on January 13th the list of robotics projects funded as a result was announced. Frank Tobe of The Robot Report has already covered this announcement and placed it in context.

Agriculture is one of four “priority domains” for robotics funding under H2020, and, of these newly funded (or refunded) projects, two – Flourish and SWEEPER – are explicitly related to agriculture.

Flourish, which has been funded at just over €3.5 Million for 42 months, will be managed by Cyrill Stachniss of the University of Bonn, Germany. It is described both in the H2020 document and on the university's website as follows: “To feed a growing world population with the given amount of available farm land, we must develop new methods of sustainable farming that increase yield while reducing reliance on herbicides and pesticides. Precision agricultural techniques seek to address this challenge by monitoring key indicators of crop health and targeting treatment only to plants that need it. This is a time consuming and expensive activity and while there has been great progress on autonomous farm robots, most systems have been developed to solve only specialized tasks. This lack of flexibility poses a high risk of no return on investment for farmers. The goal of the Flourish project is to bridge the gap between the current and desired capabilities of agricultural robots by developing an adaptable robotic solution for precision farming. By combining the aerial survey capabilities of a small autonomous multi-copter Unmanned Aerial Vehicle (UAV) with a multi-purpose agricultural Unmanned Ground Vehicle, the system will be able to survey a field from the air, perform targeted intervention on the ground, and provide detailed information for decision support, all with minimal user intervention. The system can be adapted to a wide range of crops by choosing different sensors and ground treatment packages. This development requires improvements in technological abilities for safe accurate navigation within farms, coordinated multi-robot mission planning that enables large field survey even with short UAV flight times, multispectral three-dimensional mapping with high temporal and spatial resolution, ground intervention tools and techniques, data analysis tools for crop monitoring and weed detection, and user interface design to support agricultural decision making. As these aspects are addressed in Flourish, the project will unlock new prospects for commercial agricultural robotics in the near future.”

SWEEPER, which has been funded at just over €4 Million for 36 months, will be managed by Jan Bontsema of Wageningen UR, Netherlands. It is described in the H2020 document as follows: “In modern greenhouses there is a high demand to automate labour. The availability of a skilled workforce that accepts repetitive tasks in the harsh climate conditions of a greenhouse is decreasing rapidly. The resulting increase in labour costs and reduced capacity puts major pressure on the competitiveness of the European greenhouse sector. Present robotization of this labour has entered a high level of technological readiness. However, a gap remains which halts the transition from science to economic and societal impact; the so called ‘Technological Innovation Gap’. In the EU-FP7-project CROPS, extensive research has been performed on agricultural robotics. One of the applications was a sweet pepper harvesting robot. It was shown that such a robot is economically and technically viable. The proven hardware and software modules (TRL: 6) developed in CROPS will be used as the groundwork. The successful CROPS software modules based on the Robotic-Operating-System (ROS) will be maintained and expanded in SWEEPER. Also the gripper end-effector will be retained. This patent pending module is able to grasp the sweet pepper without the need of an accurate measurement of the position and orientation of the fruit. In several experiments, it turned out that different growers use different cropping systems ranging in crop density. In SWEEPER, the cropping system itself will be optimized to facilitate robotic harvesting. In CROPS it was concluded that instead of a 9DOF, a 4DOF robot arm is sufficient, greatly reducing costs. To improve the level of robotic cognitive abilities, plant models will be applied to approximate location of sweet peppers. This “model-based vision” will increase and speed up fruit detection. Based on the insights of CROPS, sensors will be placed onto the gripper only. Also a LightField sensor will be introduced, which is able to record both colour and 3D information simultaneously.” The “CROPS” referred to above is Clever Robots for Crops, a program of the 7th Framework, which preceded H2020.

Tuesday, December 02, 2014

Iowa State professors developing weeding robot

This isn't exactly news in the sense of having been published in the last few days, but the field is still moving slowly enough that a year-old article remains relevant.

Professors Lie Tang and Kathleen Delate of Iowa State University have been developing a weeding robot, which, according to a just-published NYTimes article they hope to have in testing next spring.

Saturday, November 29, 2014

human population projections raised

Say goodbye to anything resembling wilderness in the parts of Africa that aren't desert, if a new projection of human population growth turns out to be accurate.

The difference between old predictions for Africa and the new projection is more than 2 billion people, for a total of more than 4 billion people and still growing by the year 2100, pushing the world population to 11 billion, despite a predicted decline in Asia.

So many mouths to feed, we must do everything possible to feed them, or so goes the argument, used to justify practices that produce maximum yield (in the short term), while glossing over their long-term and collateral effects – exhausting soils, polluting streams and oceans, further contributing to climate change, and ensnaring farmers in a cycle of debt.

What we absolutely must do is to protect remaining arable land – preserving and gradually improving its productivity – protecting it both from farming methods that sacrifice long-term health for short-term gains and from the urban sprawl that takes good land out of production, and to reverse that sprawl as much as possible, regreening land that had been covered in concrete and pavement.

We must also find a way to maintain production without ruining the land and the planet as a whole in the process.

But, just as importantly, we must recognize that what hunger there is at this time is caused by poverty and insufficient local production, not by a global shortfall in food production. Rather, the global market suffers from a glut of commodities and a failure to maintain prices at levels sufficient to cover farmers' costs of production. It also suffers in the sense of operating to provide for human need because some can afford to pay more for grain-fed meat, even for fuel produced from grain, than others can afford to pay for the grain required to produce it, despite low efficiencies of conversion.

So long as the use of agricultural commodities (not just crop wastes) for fuel competes with their use in the production of food, we haven't yet reached anything resembling a production crisis. Let's not allow ourselves to be rushed into foolish choices. The pressure of world population isn't a crisis we can fix and forget; it will be with us for a very long time, long past the year 2100. We must find ways of dealing with it that don't sacrifice all else on the altar of maximum production.

Saturday, November 15, 2014

The Robot Report profiles 27 companies involved in agricultural robotics

Frank Tobe, author of The Robot Report has been following the development of agricultural robotics for years. In an article published late last week and cross-posted on Robohub.orb, he brings together profiles of 27 or the most promising efforts he's learned about.