I've recently come to the conclusion that what I've been proposing in
Similarly, while we don't yet have the technology to accomplish the economic robotic performance of horticultural best practices on the scale of agriculture, it's quite clear that no fundamental obstacle stands in the way of developing such technology. We have only to apply ourselves, as roboticists and as citizens supporting their efforts (private, corporate, academic, and governmental citizens), to the project.
I've
It's widely understood that the Apollo program produced spinoffs that, taken together, amounted to a huge contribution to the economy, perhaps even more than offsetting the cost of the program itself, not least being the concentration of engineering expertise in US universities and US-based corporations.
Similarly, a determined effort to develop the necessary technologies to support, for example, polyculture incorporating perennials, can be expected to produce numerous spinoffs along the way, not the least of which would be a generation of engineers versed in the many technologies which are collectively referred to as robotics, with the confidence to apply those technologies to the tough problem of cleaning up the environmental damage humanity has done over the past few centuries.
While measured in millions of dollars, perhaps even hundreds of millions to a few billion per year, the cost of underwriting the R&D to accomplish all this would be minor compared with the cost of the Apollo program (in inflation-adjusted dollars), in part because of the far more modest scale of the resources required. Compared to the cost of recent military campaigns it would be paltry. Most importantly, in comparison with the costs of failing to do so, of leaving the future to fend for itself, it would be inconsequential. We cannot afford not to do it!
No comments:
Post a Comment